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Crossover between a displacive and an order-disorder phase transition
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The phase transition in a three-dimensional array of classical anharmonic oscillators with harmonic nearest-
neighbor coupling~discretef4 model! is studied by Monte Carlo~MC! simulations and by analytical methods.
The model allows us to choose a single dimensionless parametera determining completely the behavior of the
system. Changinga from 0 to 1` allows to go continuously from the displacive to the order-disorder limit.
We calculate the transition temperatureTc and the temperature dependence of the order parameter down to
T50 for a wide range of the parametera. TheTc from MC calculations shows an excellent agreement with the
known asymptotic values for small and largea. The obtained MC results are further compared with predictions
of the mean-field and independent-mode approximations as well as with predictions of our own approximation
scheme. In this approximation, we introduce an auxiliary system, which yields approximately the same tem-
perature behavior of the order parameter, but allows the decoupling of the phonon modes. Our approximation
gives the value ofTc within an error of 5% and satisfactorily describes the temperature dependence of the order
parameter for all values ofa.
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I. INTRODUCTION

One of the basic classification schemes for structu
phase transitions consists of assigning them to the or
disorder or the displacive type. The displacive transition c
be described as a freezing of a phonon mode, which sh
‘‘critical softening’’ at the phase transition point. The occu
rence of a soft mode is often used as a criterion for a dis
cive transition in a real system, since the frequency of
phonon modes is accessible by spectroscopic experimen

In the order-disorder case, there are two or more locati
for each atom in the unit cell. Occupation numbers for th
locations are the same above the transition temperature,
differ below. Formally, as in the displacive case, the syst
can be described in ‘‘phonon’’ language.

There is a simple model which shows that one can
from the order-disorder to the displacive typecontinuously
@1#. This model can be defined as a three-dimensional~3D!
cubic lattice of classical anharmonic 1D oscillators w
nearest-neighbor harmonic coupling@2–7#:

V5
A

2 (
n

xn
21

B

4 (
n

xn
41

C

2 (
n,n8

~xn2xn8!
2s~n,n8!,

~1!

whereA,B, andC are model parameters, the indicesn and
n8 run over all oscillators, ands(n,n8) is equal to 1 for
neighbouring particles and vanishes elsewhere. The sys
undergoes a phase transition from the higher symmetry to
lower symmetry phase at a certain temperatureTc for any
A,0, B.0, C.0, i.e., the statistical average of each co
dinatexn takes a nonzero valueh5^xn& below Tc and van-
ishes above. It is often convenient to express the potentia~1!
as
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with an ‘‘on-site’’ single particle potential

v~x!5
A8

2
x21

B

4
x4, A85A112C. ~3!

It is known that the behavior of the system is governed
the ratio

a52A/C. ~4!

At small a.0 the system shows a displacive phase tr
sition, while for largea the system behaves as the Isin
model, which shows a typical order-disorder phase tran
tion. The transition temperaturesTc in the limit cases are
known from Ising-model and self-consistent phonon calcu
tions, to be, respectively@2,4,8,9#,

Tc~a↓0!'2.64CuAu/B,
~5!

Tc~a→1`!'9.12CuAu/B,

assuming here and below that the temperature is express
energy units~the Boltzmann constant equal to 1!. On the
other hand, despite the important role of the above mode
the theory of structural phase transitions@2#, the actual de-
pendence ofTc(a) is not known. The results of previou
molecular dynamics and Monte Carlo studies are collecte
Fig. 1. They obviously do not give a consistent quantitat
picture. So far the analytical study was restricted to
mean-field approach@2,10#.

Recently, it was observed that knowledge of the dep
denceTc(a) can be useful in the quantitative analysis of t
properties of crystalline Sn2P2S6 which has a ferroelectric
126 ©2000 The American Physical Society
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phase transition showing simultaneously features typical
both the order-disorder and displacive type@11#.

The aim of this paper is to establish this dependence
Tc(a) as well as the temperature behavior of the order
rameter. Let us stress that, similar to some related pa
@4–7#, we are not interested here in the details of critic
behavior in the very vicinity of the phase transition. T
critical behavior of this model is thoroughly described, f
example, in Ref.@2#.

The paper is organized as follows. Section II describ
our Monte Carlo~MC! simulations performed for a wide
range of values of parametera. In Sec. III, we first compare
the MC results with rather poor predictions of the stand
decoupling schemes and suggest an improved self-consi
equation for the order parameter that allows us to calcu
both the transition temperature and the order parameter
a reasonable accuracy for all values ofa.

II. MONTE CARLO SIMULATIONS

For numerical simulation it is convenient to rescale co
dinates and energy units. This allows the reduction of
potential energy~1! into the form

Vred52
a

2 (
n

xn
21

a

4 (
n

xn
41

1

2 (
n,n8

~xn2xn8!
2s~n,n8!,

~6!

with a single dimensionless parametera52A/C. Then the
rescaled order parameter at zero temperature is equal to
any a.0.

The typical size of the array of atoms studied in our M
simulations is 10310310 atoms, with periodic boundar
conditions. We perform Monte Carlo steps consecutively
each atom, and accept~or reject! them accordingly to stan
dard criteria. Additionally, we perform ‘‘magic’’ steps fo
the case of largea, when the sign of the coordinate of th
given atom may flip. These steps allow the system to th
malize in the order-disorder limit as well. We calculate t
square of the order parameter as the average

FIG. 1. The critical temperature vs lna. The curve shows the
mean-field result; thin horizontal lines show the asymptotic val
of Tc . Results of previous molecular-dynamics@5,3# and Monte
Carlo @4# calculations are plotted with filled and open circles, r
spectively.
r

of
-
rs
l

s

d
ent
te
ith

-
e

for

r

r-

h25N21/2^X0
22X1

2&, ~7!

whereXk5N21/2(xneikn is the Fourier transform ofxn , and
N is the total number of particles.

For the case of an infinite slab,N21/2X1
2 is negligible, and

Eq. ~7! gives purely the square of the order parameter. Fo
finite slab, the termX1

2 allows to remove fluctuations from
the high-temperature branch.

The results of the calculations are presented in Figs. 2
It is crucial to check the dependence of the results on
system size. Figure 2 presents the temperature dependen
X for sizes 15315315 and 53535. It is clear that chang-
ing of the size of the slab affects practically only the flu
tuation region nearTc . The value ofTc calculated from the
fit of the dependence~see Fig. 2! remains almost unchanged
This type of size dependence of data is found for the wh
range ofa.

s

FIG. 2. The role of the finite size of the system studied nume
cally. Numerical data for the square of the order parameter plo
as a function ofT. Filled circles: 53535 oscillators; open circles
15315315 oscillators. Both results are obtained fora55 in Eq.
~7! by averaging over 3000 realizations at each point. The solid
shows the interpolation used to obtainTc .

FIG. 3. The temperature dependence of the square of the o
parameter for values ofa varying from 0.98 to 4000. There is
factorA2 between thea values for the neighboring curves. The da
are obtained using Eq.~7! by averaging over 1000 realizations
each point; the relative amount of, ‘‘magic’’ steps is 0.02.
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Figure 3 presents data forh2(T) obtained for the potentia
~6! for different values of the parametera. Note that the
Landau theory yields a linear temperature dependence
h2(T).

Values ofTc are extracted from the data presented in F
3. The plot forTc(a) is given in Fig. 4 where a logarithmic
scale for thea axis is used. The monotonic dependence
proaches known limit values with good accuracy. T
change ina is for which Tc(a) varies significantly is abou
two orders of magnitude.

III. ANALYTICAL APPROACHES

Two standard decoupling schemes have been used in
literature to make the phase transition in the model tracta
usually referred to as mean-field~or independent-site! ap-
proximation and self-consistent phonon~or independent-
mode! approximation. In this section we first analyze t
advantages and disadvantages of these standard appro
tions and then we propose a modified approximation sch
that combines the advantages of both schemes.

A. Independent-mode approximation

In the independent-mode approximation~IMA !, the de-
viations from the average value given by the order param

yn5xn2h ~8!

are represented by Fourier coordinatesYk5N21/2(nyneikn.
Interaction between Fourier coordinates is simplified by
suming that each Fourier coordinate is influenced only by
average of its interactions with the other coordinates. T
leads to an effective harmonic approximation. The order
rameter in IMA is defined by the equation@2#

Ah1Bh313BhI ~T!50, ~9!

where the functionI (T)5N21(kYkY2k is calculated from
the phonon dispersion relation renormalized by the giv
value of the order parameter and the thermal fluctuations
the vicinity of the phase transition point,I (T) can be evalu-

FIG. 4. Numerical results for the critical temperatureTc vs lna.
The values ofTc are extracted from the data presented in Fig.
Thin horizontal lines show the asymptotic values ofTc .
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ated by assuming a ‘‘critical’’ phonon dispersion~with zero
frequency of the zone-center mode!:

I ~T!'
T

4C~2p!3E d3k

32coskx2cosky2coskz
5

T

3Ck
,

~10!

where k'2.638. Note that the stability limitTc, IMA5
2ACk/B of the high temperature phase as obtained fr
Eqs. ~9! and ~10! provides an exact prediction forTc and
h(T) in the displacive limit. However, for the order-disord
limit, the IMA values differ considerably from the exact va
ues.

B. Mean-field approximation

In the mean-field approximation~MFA! for the system
with harmonic coupling, the behavior of the original syste
is modeled by an auxiliary system in which all direct inte
site interactions are replaced by an effective external fieldE,
but the on-site anharmonicity is kept without any approxim
tion. Taking the on-site potential as given by Eq.~3!, the
ensemble averages in such an auxiliary system at fixed
ternal field are given by

h5^xn&5gT~E![
E x exp$2@v~x!2Ex#/T%dx

E exp$2@v~x!2Ex#/T%dx

.

~11!

Since at finite temperatures thegT(E) is a monotonic func-
tion, it can be inverted and the self-consistent equation
the order parameter in the auxiliary system can be written

E5gT
21~h!. ~12!

The effective fieldE is defined as the force onxn supplied by
the interaction terms separated in Eq.~2!, assuming that the
displacement of the six nearest-neighboring sites~or at least
their sum! is frozen at the equilibrium valueh:

E512Ch. ~13!

Self-consistent solution of Eqs.~12! and~13! defines the or-
der parameterhMFA in MFA. The phase transition tempera
tureTc,MFA(a) at whichhMFA vanishes is shown in Fig. 1. I
was previously remarked by Aubry@1,2# that the relative
overestimation ofTc by MFA is almost the same~about
30%! for both limit cases (a→10,a→1`). Comparison of
Tc,MFA(a) with our MC results shows that the discrepancy
really systematic for all intermediate cases. Although t
error is rather large, its systematic character strongly s
gests that the physics of the crossover is already well ta
into account by the MFA.

Let us analyze the functiongT(E) describing the auxiliary
ensemble of the uncoupled on-site oscillators in more de
Let us stress the following points.

~1! The variation ofTc with a is within MFA entirely
given by the slope of the functiongT(h) at h50.

~2! Unlike the on-site potentialv(x), the functiongT(E)
at finite temperature is a smooth monotonic odd function~see

.
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Fig. 5! at anyT,a @10#. Both gT(E) and its inversegT
21(h)

can be expanded in Taylor series:

gT~E!5(
i 51

`

x2i 21~T!E2i 21,

~14!

gT
21~h!5(

i 51

`

j2i 21~T!h2i 21.

~3! The functiongT
21(h) can be identified with the deriva

tive of its free energyF(h,T), which can thus be written in
the form

F~h,T!5F~0,T!1(
i 51

`
j2i 21~T!

~2i !
h2i . ~15!

~4! Obviously, the Taylor expansion coefficients ofgT(E)
and gT

21(h) are related (j1x151, j3x1
31x350, etc.! This

allows to expressj2i 21(T) in the limit case of the weak
anharmonicity (B!A8) by expandinggT(E) in powers ofB.
With an accuracyO(B2) we obtain

j1~T!5A81
3BT

A8
, j3~T!5B. ~16!

In the strongly anharmonic order-disorder limit (A8,0,T
!A82/B), expressinggT(E) via averageŝx2&,^x4& yields

j1~T!5
BT

A8
, j3~T!5

B2

3A82
, . . . . ~17!

~5! Finally, let us note that in the weak anharmonic
case we can solve the inverse problem—express the pa
eters of the on-site potential via the first two free ene
coefficientsj1(T),j3(T). With the same accuracy as E
~16!

A85j1~T!2
3j3~T!T

j1~T!
, B5j3~T!. ~18!

FIG. 5. Typical dependence ofgT
21(h) at smalla ~solid line!

and largea ~dashed line!.The inset shows the on-site potential f
both cases.@Calculated for Eq.~11! with T55 anda51 and 100,
respectively.#
m-
y

C. Combined scheme

We have seen that the IMA predicts well the phase tr
sition temperature in the displacive limit, while MFA pre
dicts rather well its variation witha. It would be desirable to
have an approximate equation of state for the system~1! that
combines the advantages of both above discussed
proaches. The key idea of our approach is the assumptio
the existence of an effective potential~with temperature de-
pendent coefficients! for which the self-consistent phono
approximation correctly gives the order parameter. In de
mining the coefficients of such an effective potential, we u
the properties of the free energyF(h,T) @respectively, its
derivativegT

21(h)] of the auxiliary system of uncoupled an
harmonic oscillators discussed above.

More precisely, the self-consistent equation forh(T) is
constructed in three steps, as follows.

~1! We look for an effective on-site potential of the form

u~x!5
a8

2
x21

b

4
x4, ~19!

wherea8 andb are defined by the expressions that appea
the above discussed inverse problem~18!:

a85j12
3j3T

j1
, b5j3 . ~20!

This potential obviously coincides withv(x) in the weak
anharmonic limit.

~2! We introduce a functionj1,eff(T,h), which allows to
write gT

21 formally as a finite polynomial:

gT
21~h![j1,eff~T,h!h1j3~T!h3. ~21!

These functionsj i ,eff(T) are used instead ofj1(T) in the
definitions~20!, so that we have

a85j1,eff~T,h!2
3j3~T!T

j1,eff~T,h!
, b5j3~T!. ~22!

Note that the potentialu(x) still coincides withv(x) in the
weak anharmonic limit for smallh, sincej1,effa(T,h) goes
to j1(T) for h→0.

~3! We consider Eq.~2! and replacev(x) with coefficients
A8 andB by an expressionu(x) with temperature-dependen
coefficientsa8 and b defined in Eq.~22!. Then we apply
IMA to this auxiliary system. Equation~9! then becomes

Fj1,eff~T,h!212C1
j3~T!T

Ck
2

3j3~T!T

j1,eff~T,h!Gh1j3~T!h350.

~23!

This equation is to be solved together with formulas~21! and
~11!, definingj1,eff andgT , respectively. The value ofj3(T),
entering these equations, is given by series~14!.

For the calculation of the phase transition temperat
only, the second step can be omitted. It is obvious from
construction that the suggested method provides the s
~exact! result for theTc in the displacive limit as the usua
IMA. In the extreme order-disorder limit, the value ofTc
defined by Eq.~23! can be obtained analytically using Eq
~17!. The resulting value ofTc overestimates the known
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Ising value by less than 7%. The principal advantage of
modified approach is that it allows to calculate theTc @and
h(T)] with the above or better accuracy for all values ofa,
as can be seen from the comparison with our MC data~Fig.
6!. The MC result forh2(T) is satisfactorily described a
well ~Fig. 7!.

IV. DISCUSSION

Let us analyze the proposed model in comparison with
standard decoupling schemes. The latter treat the system
gas of elementary excitations, which are supposed to inte
weakly. The assumption of weak interaction allows to
place the interaction between the elementary excitations
an interaction with an average field. Choice of the elem
tary excitations as the plane waves or on-site oscilla
yields IMA or MFA, respectively. It is clear, however, tha
the assumed weakness of the interaction is actually not r
ized for the general case, no matter what elementary ex
tions we choose.

The main advantage of our approach is that it virtua

FIG. 6. Numerical data forTc(ln a) compared with results o
calculations by Eqs.~23!, ~11!, and~21! ~the solid line!. The mean-
field approximation is given by the dashed line.

FIG. 7. The temperature dependence of the square of the o
parameter at several values ofa(50.98, 3.9, 15.6, 62.5, 250, 1000
4000!. Tc grows with increasinga: numerical data~points! and
calculation from Eqs.~23!, ~11!, and~21! ~lines!.
e

e
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replaces the real strongly correlated system~1! with an aux-
iliary one, which allows decoupling. It is also worth notin
that the theory is carried out in terms ofgT(h), which is
always a smooth monotonic function. Moreover,gT(h) does
not change drastically whena is varied from 0 to1`—the
calculation of parametersj1 and j3 at Tc shows that their
dimensionless values lie within the relatively narrow rang
9.7–12 and 0–4, respectively. Therefore the replacem
procedure works uniformly well for all values of the param
eters.

It would be interesting to investigate possible extensio
to higher-order terms. A systematic extension of the pres
method should contain a larger number of terms in the eff
tive on-site potential~19! and in the expression for the func
tion gT

21(h) in Eq. ~22!, and solve the self-consistent equ
tion for the auxiliary system more accurately than Eq.~23!.

As a simplification we can consider a purely linear aux
iary system, i.e., neglect theb term in Eq.~19! andj3(T) in
Eq. ~22!. We obtaingT

21(h)[j1,eff(T,h)h and Eq.~23! then
reduces simply to the mean-field equation of stategT

21(h)
512Ch. Therefore, the scheme proposed here can also
considered as a generalization of the mean-field approxi
tion.

Our method can be applied to more complicated mod
for which the self-consistent phonon theory is exact in
weak anharmonic limit. This is particularly interesting fo
the analysis of the DIFFOUR model@12# in which the addi-
tional second-neighbor harmonic coupling shows a ph
transition to an incommensurate phase for which the M
calculations are much more difficult.

V. CONCLUSIONS

We have studied the crossover from a displacive to
order-disorder phase transition in the discretef4 model with
first-neighbor coupling.. The crossover is governed by
single parametera. Quantitative information aboutTc(a)
andh(T,a) in this simple model may be helpful in elucida
ing the behavior of some real crystals with phase transiti
of a mixed displacive and order-disorder type.

In terms of the dimensionless parametera we determined
the change of the transition temperature by Monte Carlo
culations. These show a crossover from the displacive to
order-disorder limit.

Monte Carlo calculations have shown an excellent agr
ment forTc in the two limit cases in which exact results a
known. We expect that the same precision is obtained for
intermediate region. Thus, the presented Monte Carlo res
can be taken as quite reliable estimates ofTc(a) with a pre-
cision of the order of 1% and we believe that a compara
precision was achieved for the temperature dependenc
the order parameter~except in the critical region in the vi
cinity of the phase transition!.

We have presented an analytical approach, which g
beyond the conventional decoupling schemes. For this,
introduce the auxiliary array of oscillators that~i! can be
treated in the independent-mode approximation and~ii !
yields approximately the same values ofTc and the order
parameter, as the real system. The method combines
equation of state of the self-consistent phonon theory w

er
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the response function of the system of uncoupled an
monic oscillators used in the the mean-field theory. It can
presented as a generalization of the mean-field scheme.

The analytical results forTc agree with Monte Carlo
simulations with about 5% accuracy. Further improvem
could possibly come from higher order terms in the exp
o

ns
r-
e

t
-

sion we have used. The formalism can be used to study
commensurate phase transitions as well.
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